Learning the dependence structure of rare events: a non-asymptotic study
نویسندگان
چکیده
Assessing the probability of occurrence of extreme events is a crucial issue in various fields like finance, insurance, telecommunication or environmental sciences. In a multivariate framework, the tail dependence is characterized by the so-called stable tail dependence function (STDF). Learning this structure is the keystone of multivariate extremes. Although extensive studies have proved consistency and asymptotic normality for the empirical version of the STDF, non-asymptotic bounds are still missing. The main purpose of this paper is to fill this gap. Taking advantage of adapted VC-type concentration inequalities, upper bounds are derived with expected rate of convergence in O(k−1/2). The concentration tools involved in this analysis rely on a more general study of maximal deviations in low probability regions, and thus directly apply to the classification of extreme data.
منابع مشابه
On the residual dependence index of elliptical distributions
The residual dependence index of bivariate Gaussian distributions is determined by the correlation coefficient. This tail index is of certain statistical importance when extremes and related rare events of bivariate samples with asymptotic independent components are being modeled. In this paper we calculate the partial residual dependence indices of a multivariate elliptical random vector assum...
متن کاملExperimental and Mathematical Investigation of Time-Dependence of Contaminant Dispersivity in Soil
Laboratory and field experiments have shown that dispersivity is one of the key parameters in contaminant transport in porous media and varies with elapsed time. This time-dependence can be shown using a time-variable dispersivity function. The advantage of this function as opposed to constant dispersivity is that it has at least two coefficients that increase the accuracy of the dispersivity p...
متن کاملSparsity in Multivariate Extremes with Applications to Anomaly Detection
Capturing the dependence structure of multivariate extreme events is a major concern in many fields involving the management of risks stemming from multiple sources, e.g. portfolio monitoring, insurance, environmental risk management and anomaly detection. One convenient (nonparametric) characterization of extreme dependence in the framework of multivariate Extreme Value Theory (EVT) is the ang...
متن کاملAsymptotic properties of the sample mean in adaptive sequential sampling with multiple selection criteria
We extend the method of adaptive two-stage sequential sampling toinclude designs where there is more than one criteria is used indeciding on the allocation of additional sampling effort. Thesecriteria, or conditions, can be a measure of the targetpopulation, or a measure of some related population. We developMurthy estimator for the design that is unbiased estimators fort...
متن کاملNonparametric estimation of tail dependence
Dependencies of extreme events (extremal dependencies) are attracting an increasing attention in modern risk management. In practice, the concept of tail dependence represents the current standard to describe the amount of extremal dependence. In theory, multivariate extreme-value theory (EVT) turns out to be the natural choice to model the latter dependencies. The present paper embeds tail dep...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015